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Welcome Message
I am overwhelmed to release this issue of AMaThing commemorating the occasion of the International Day

of Mathematics (IDM) celebrated on March 14. Mathematics is crucial in our daily activities, which we often
underestimate. International Mathematical Union (IMU) took IDM as an initiative to promote mathematics in a
non-mathematical world.

Moreover, in recent years, the public has seen a world explode with unscientific truth and flawless statements
due to the lack of communication between academia and science. Communicating science is integral for a researcher
and vital in upholding truths. Our motive for releasing this issue is to help society understand various advances in
research in mathematics and their allied areas, assisting the stakeholders in learning new approaches.

I thank the entire team for their painful efforts in producing this magazine. Over the years, we have raised the
magazine’s standards, and it is the best copy produced.

Happy Reading!

Dr. Jayesh M. Dhodiya
Head, Department of Mathematics
Sardar Vallabhbhai National Institute of Technology
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Exploring Advanced Theoretical and Com-
putational Methods for Fluid Flow in
Porous Media
Nagesh Sahu

Introduction
Understanding the movement of fluids through

porous materials is a key area of research in fields like
hydrogeology, petroleum engineering, and environmen-
tal science. These systems are inherently complex, of-
ten requiring nonlinear partial differential equations
(PDEs) to model the interactions between fluid dy-
namics, porosity, and transport processes. This arti-
cle dives into the core equations that describe flow in
porous media, discusses analytical and computational
techniques for solving them, and evaluates modern nu-
merical methods to simulate these phenomena accu-
rately.

Mathematical Models of
Fluid Flow in Porous Media

At the heart of porous media flow lies Darcy’s
Law, which relates the fluid flux to the pressure gra-
dient, permeability, and fluid viscosity. While Darcy’s
Law works well for slow and viscous flows, real-world
scenarios often require more nuanced models. For ex-
ample, Brinkman’s equation adds a term to account
for viscous shear stresses, while Forchheimer’s equa-
tion introduces an inertial component to address high-
velocity flows. These extensions are crucial for captur-
ing behaviours like turbulence or non-Newtonian fluid
dynamics in complex porous structures.

Analytical and Semi-
Analytical Solutions

Despite their complexity, analytical approaches
remain vital for validating numerical models and un-
covering theoretical insights. These are a few key meth-
ods:

• Perturbation Techniques: This approach
is useful for systems with mild nonlinearities.
These methods approximate solutions by ex-

panding around a small parameter (e.g., low flow
rates).

• Integral Transforms: Laplace or Fourier trans-
forms simplify linear transient flow problems by
converting PDEs into algebraic equations.

• Homotopy Analysis Method (HAM): This
flexible approach generates convergent series so-
lutions for strongly nonlinear problems without
relying on simplified assumptions.

• Adomian Decomposition Method (ADM):
This method breaks down nonlinear equations
into simpler components, enabling iterative so-
lutions without discretization.

These techniques provide benchmark results and
reveal the influence of parameters (viz. permeability
or viscosity) in a flow behaviour.

Computational Approaches
for Nonlinear PDEs

Generally, analytical methods are not reliant on
heterogeneous or highly nonlinear systems. In such
scenarios, computational strategies play an important
role. Some popular methods include:

• Finite Difference Method (FDM): This
method is ideal for structured grids and straight-
forward geometries. FDM approximates deriva-
tives using grid-based discretization.

• Finite Element Method (FEM): In this
method, we excel an irregular domain (e.g., frac-
tured rock) by dividing the domain into smaller
and adaptable elements.

• Finite Volume Method (FVM): This method
ensures mass and momentum conservation at dis-
crete volumes, making it a viable approach for
fluid flow simulations.

• Lattice Boltzmann Method (LBM): This
model is implemented when models flow at
a mesoscopic scale using particle interactions,
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which is particularly effective for multiphase
flows or complex geometries.

An efficient method in choosing a correct ap-
proach (technique) depends on various factors, includ-
ing computational resources, required accuracy, the
system’s geometric complexity, etc.

Applications and Cutting-
Edge Developments

Research in porous media flow has transforma-
tive applications. A few of them are listed as follows:

• Groundwater Management: We can improve
aquifer recharge and contaminant transport mod-
els.

• Oil and Gas Recovery: It is possible to opti-
mize reservoir simulations to boost hydrocarbon
extraction or CO2 storage.

• Environmental Cleanup: We can develop
strategies for soil decontamination or filtering
pollutants.

• Biomedical Engineering: An emerging ap-
proach is studying drug delivery through tissues
or designing artificial organs.

Recent advancements leverage high-performance
computing (HPC) to handle large-scale simulations
while machine learning accelerates model calibration.
Hybrid methods that blend analytical and numerical
techniques are gaining momentum, offering faster solu-
tions without sacrificing precision.

Conclusion
Modeling fluid flow in porous media is a multi-

faceted challenge that bridges theory and computation.
By combining analytical insights with advanced numer-
ical tools, researchers can tackle real-world problems
with various applications, from managing groundwater
resources to designing medical treatments. As com-
putational systems become more efficient and newer
methods evolve, our ability to predict and control these
systems will deepen and drive innovation across science
and engineering.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nagesh Sahu
Department of Mathematics, Sardar Val-
labhbhai National Institute of Technology,
Surat, Gujarat, India-395007
E-Mail Id: d21ma002@amhd.svnit.ac.in
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The Transportation Problem: An Overview
Hartik Bapoliya, and Indira Tripathi

Background
The transportation problem is a fundamental op-

timization problem in logistics and operations research.
It entails determining the best cost-effective way to
transport items from various locations, like factories or
warehouses, to different places, such as retail stores or
distribution hubs. The primary motive is to meet sup-
ply and demand restrictions while minimizing trans-
portation costs.

This problem occurs in many sectors like man-
ufacturing, supply chain management, and logistics,
where efficient distribution of products keeps the over-
all cost low and improves service levels.

History
For over a century, researchers have been study-

ing the transportation problems. It was initially de-
fined in the early 20th century by Frank L. Hitchcock
in 1941 [2] and further enhanced by T. C. Koopmans [3]
in 1949. Koopmans and Leonid Kantorovich made sig-
nificant contributions to the field by developing math-
ematical techniques for optimal resource distribution,
an achievement that earned them the Nobel Prize in
Economics in 1975.

The transportation problem was formulated us-
ing linear programming as a well-defined optimization
model. This was further improved by George Dantzig’s
[1] simplex method and specialized algorithms like
the MODI (Modified Distribution) method and the
stepping-stone method.

Model Formulation
Generally, transportation problems are expressed

in linear programming terms. Consider the following
components:

• Sources: Locations that provide supply goods,
denoted as r different sources.

• Destinations: Locations that need goods, de-
noted as t different destinations.

• Supply constraints: Supply capacity of every
source has a fixed capacity.

• Demand constraints: Requirements for every
destination must be fulfilled.

• Transportation cost: Transporting goods from
a source location to a destination.

The transportation problem can be expressed as:

minimize
r∑

s=1

t∑
d=1

esdxsd

Subject to

t∑
d=1

xsd ≤ as, ∀ s = 1, 2, · · · , r

r∑
s=1

xsd ≥ bd, ∀ d = 1, 2, · · · , t

xsd ≥ 0, ∀ s, d

Where

• The quantity of unit goods which transported
from the sth source to dth destination is denoted
by xsd.

• The cost per unit of transportation from sth

source to dth destination is denoted by esd.

• The availability of goods at source s is as.

• The requirement of goods at destination d is bd.

For finding an initial feasible solution, multiple
methods like the Northwest Corner method (NWCM),
Least Cost Method (LCM), and Vogel’s Approxima-
tion Method (VAM), and then for the optimal solution
techniques like the MODI method are used.

Applications
The transportation problem is widely used in

various industries and applications, including:

1. Supply Chain Management: For optimizing
the distribution of raw materials and finished
products to minimize costs.

2. Logistics and Freight Transport: In finding
the best routes and modes of transportation for
goods movement.

3. Healthcare and Emergency Services: For ef-
ficiently allocating medical supplies and resources
to hospitals and clinics.
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4. Energy Distribution: In managing fuel supply
chains for power plants and distribution centers.

5. E-commerce and Retail: For optimiz-
ing warehouse-to-customer deliveries to ensure
timely fulfillment and reduce costs.

6. Public Transportation Planning: In deter-
mining optimal routes for buses, trains, and other
transport modes to maximize efficiency.

7. Waste Management: For optimizing the col-
lection and disposal of waste from different loca-
tions.

Example
Four petrochemical plants in Malaysia create

polymer and sell it to China, the Middle East, Eu-
rope, and South East Asia through the trading busi-
ness “Mitco Labuan.” The following table lists each
route’s supply and demand and unit transportation
costs. Thousands of Malaysian Ringgit (MR) repre-
sent the unit transportation costs (Table 2.1).

Variations in other distances and exchange rates
affect the shipping cost per unit. Therefore, the trading
organization needs to allocate production capacities to
the different demand destinations most efficiently to
decrease the shipping cost.

Conclusion
The transportation problem remains a corner-

stone of optimization and logistics and supply chain

management decision-making. With advancements in
computational techniques and artificial intelligence,
modern solutions have evolved to handle large-scale
and dynamic transportation networks efficiently. As
businesses and economies expand, solving transporta-
tion problems efficiently will remain crucial for mini-
mizing costs and improving service efficiency.

References
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to a transportation problem. In Activity Analy-
sis of Production and Allocation, volume No. 13
of Cowles Commission Monograph, pages 359–373.
Wiley, New York, 1951.

[2] F. L. Hitchcock. The distribution of a product from
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Phys. Mass. Inst. Tech., 20:224–230, 1941.
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portation system. Econometrica, 17:136–146, 1949.
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Table 2.1: Unit Cost of Shipping (MR ’000)

Plant China Middle East South East Asia Europe Capacity of production
P1 200 300 100 600 110
P2 400 350 150 650 75
P3 300 250 150 600 95
P4 500 400 200 700 125
Requirement 200 90 40 45
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On Atangana–Baleanu Fractional Deriva-
tive
Shinde Bhavika Dadaso

Abstract. In this article, the evolution and applications of the Atangana-Baleanu frac-
tional derivative have been discussed. This article gives a brief historical background of
fractional derivatives, mathematical expression, theoretical advancement, and practical
applications.

Introduction
The study of derivatives and integrals of arbi-

trary orders (specifically non-integer) in fractional cal-
culus is gaining importance because of its effectiveness
in modeling systems in various fields such as mathe-
matics, physics, and engineering. Some basic fractional
derivatives like the Caputo and Riemann–Liouville
derivatives are widely used. However, these fractional
derivatives have drawbacks, such as singular kernels
and local properties. In real-world phenomena, specif-
ically in systems with non-local interactions and mem-
ory effects, these derivatives create problems in accu-
rate detection.

In 2016, Abdon Atangana and Dumitru Baleanu
discovered a new fractional derivative called Atangana-
Baleanu fractional derivative. It overcomes the restric-
tions of traditional fractional derivatives and provides
its applications in different areas of scientific domains,
like differential equations, geometric function theory,
etc. The impact of this fractional derivative also oc-
curs in mathematical modeling of critical systems.

Historical Background
The great scientist L’Hôpital came up with an

interesting question about the derivative of a function
with order 1/2. This question led to the rich history
of fractional calculus in 1965. Many scientists like
Riemann, Liouville, Caputo, and Grünwald have con-
tributed significantly to the development of fractional
derivatives.

These basic fractional derivatives come with cru-
cial limitations, and these limitations motivate the
generalization of the derivative called the Atangana-
Baleanu fractional derivative. This derivative contains
the non-local and non-singular kernel, which was ex-
plained by the generalized Mittag-Leffler function.

Due to the steady behavior of this fractional
derivative and its applications in a wide range of prob-
lems, many researchers came forward to explore its

mathematical expression and potential extension to
different fields.

Mathematical Expression
A non-singular and non-local kernel, dependent

on the generalized Mittag-Leffler function, defines the
Atangana-Baleanu fractional derivative. This deriva-
tive maintains the memory effect to simulate critical
systems by recognizing the whole function history.

The mathematical formulation is given by:

CDδ
a+f(t) = B(δ)

1 − δ

∫ t

a

Eδ

(
− (t − x)δ

1 − δ

)
f ′(x)dx

Where:

• δ - Fractional order (0 < δ < 1),

• Eδ - The Mittag-Leffler function,

• B(δ) - Normalization constant.

Theoretical Advancements
In the field of fractional derivatives, the

Atangana-Baleanu fractional derivative gives a great
advantage in theoretical development given as follows:

• With the non-singular and non-local kernel gen-
eralizing classical fractional derivative.

• Giving memory effects a more concrete represen-
tation via mathematics.

• Supporting the advancement of novel computa-
tion methods for fractional differential equation
solutions.

• Resolving challenges related to singular kernels
in classical derivatives.
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Applications
• Epidemiology: To better represent disease dy-

namics in the real world, SEAIR epidemic models
add nonlocal interactions and memory effects [2].

• Geometric Function Theory: The Atan-
gana–Baleanu fractional integral operator is em-
ployed to define new subclasses of analytic func-
tions, leading to advances in geometric function
theory, such as distortion theorems and coeffi-
cient estimates [1].

• Differential Equations: It solves linear and
nonlinear fractional differential equations, offer-
ing new existence and unique outcomes. These
differential equations are solved numerically us-
ing methods such as the Chebyshev collocation
technique [3].

• Solute Transport in Porous Media: The AB
derivative models non-Darcy flow in porous me-
dia to better understand the solute transport dy-
namics. [4]
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Machine Learning and Twin Support Vec-
tor Machine: An Emerging Approach
Patel Princekumar Dharmendrabhai

Machine learning has become a revolutionary
technology, driving innovation in fields such as health-
care, artificial intelligence, robotics, and finance. Fun-
damentally, it helps the systems to identify patterns
and structures among data, that allows to make
judgments or predictions without explicit program-
ming. Support Vector Machines (SVM) and their
more advanced variant, Twin Support Vector Machines
(TWSVM), are very popular for classification tasks
among the multiple machine learning approaches. In
many cases, TWSVM is the favored option because it
offers a more effective approach to solving classification
difficulties.

What is Machine Learning?
A subfield of artificial intelligence (AI), machine

learning is concerned with creating algorithms that let
computers learn from input data and get better at what
they do. We must comprehend the three main cate-
gories of machine learning before moving on to specific
algorithms. These three categories are as follows:

• Supervised Learning: It works with labeled
datasets and concentrates on learning patterns
through the relationship between variables and
known outcomes.

• Unsupervised Learning: It concentrates on
learning patterns and structure between unla-
beled datasets.

• Reinforcement Learning: The model learns
by trying things out, seeing what works, and get-
ting rewarded for good choices or corrected when
it makes mistakes, similarly as we learn through
experiences.

Support Vector Machine
(SVM)

SVM is a machine learning algorithm that cat-
egorizes data by finding the best line or hyperplane
that separates different classes in datasets. It is very
useful for binary classification problems due to its high

accuracy and robustness. However, there are some lim-
itations of SVM, such as difficulty in handling imbal-
anced data and computation being very complex for
large datasets.

Mathematically, for a given set of training sam-
ples (xi, yi), where xi ∈ Rn and yi ∈ {−1, 1}, SVM
aims to find a hyperplane wT x + b = 0 that maximizes
the margin between the two classes. It can be formu-
lated as the following optimization problem:

min
w,b

1
2 ||w||2 (4.1)

subject to:

yi(wT xi + b) ≥ 1, ∀ i (4.2)

Twin Support Vector Ma-
chine (TWSVM)

TWSVM solves the limitations of traditional
SVM. It is a binary classifier that constructs two non-
parallel hyperplanes instead of one. Each hyperplane
is associated with one class and as far away from the
other as possible.

Mathematically, TWSVM constructs two hyper-
planes wT

1 x + b1 = 0 and wT
2 x + b2 = 0, each closer

to one class. The optimization problems for TWSVM
are:

min
w1,b1

1
2 ||Aw1 + eb1||2 + C1eT

2 η2 (4.3)

Subject to:

−(Bw1 + e2b1) + η2 ≥ e2, η2 ≥ 0, (4.4)

and

min
w2,b2

1
2 ||Bw2 + eb2||2 + C2eT

1 η1 (4.5)

Subject to:

(Aw2 + e1b2) + η1 ≥ e1, η1 ≥ 0, (4.6)
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where A and B represent the data matrices of
the two classes, C1, C2 are regularization parameters,
η1 and η2 are slack variables, and e1, e2 are vectors of
ones.

Advantages of TWSVM
• Faster Computation: TWSVM transforms a

single large quadratic programming problem of
SVM into two smaller QPPs and reduces the
computational time by a quarter of what tradi-
tional SVM takes.

• Better Handling of Imbalanced Data: Since
TWSVM constructs different hyperplanes for
each class, it can handle imbalanced data more
effectively.

• Higher Accuracy: In high-dimensional
datasets, TWSVM provides better classification
performance.

Applications of TWSVM
TWSVM has been very useful in various do-

mains, including:

Bioinformatics & Medical Diagnosis
• Bioinformatics: In identifying protein struc-

tures or classifying gene expressions based on ge-
nomic data.

• Disease Prediction: Using Medical records and
diagnostic data, applied to detect diseases like di-
abetes, COVID-19, and heart disease.

• Cancer Classification: Classifying diseases like
cancer based on patient data like imaging scans,
where rapid diagnosis is crucial. (e.g., lung,
breast, and brain cancer)

Financial Market Analysis
• Stock Market Prediction: Using historical

market data helps forecast stock trends.

• Credit Risk Assessment: Used by banks to
classify loan applicants based on financial fea-
tures.

Image Processing
• Face Recognition: Used for the identity verifi-

cation and security system.

• Object Detection: Classifying and grouping
images for autonomous vehicles and surveillance
applications.

• Handwriting Recognition: Used for recogniz-
ing handwritten text and converting it into digi-
tal format.

Text Classification & Natural Language
Processing (NLP)

• Spam Detection: Used for separating spam
emails.

• Sentiment Analysis: To analyze customer re-
views for products/ shops, tweets, and social me-
dia posts.

• Document Categorization: Used to group ar-
ticles into several categories, such as entertain-
ment, sports, and news.

Remote Sensing & Environmental Mon-
itoring

• Land Cover Classification: Helps study satel-
lite images, which is useful in agriculture and ur-
ban planning.

Speech Recognition & Audio Processing

• Speaker Identification: Using audio samples
in a voice detection system helps in speaker iden-
tification.

• Music Genre Classification: Using audio
properties helps to classify and sort the songs.

Recent Advances and Re-
search Directions

Recent research in TWSVM has focused on:

• Feature-Weighted Kernel Methods: By
their importance, assigning different weights to
features that help to improve performance (such
as Centered Kernel Alignment).

• Fuzzy TWSVM: Using fuzzy membership helps
improve accuracy and robustness against noisy
data.

• Hybrid Models: Hybrid models combine deep
learning and TWSVM to improve efficiency for
complex datasets.

• Multiple Kernel TWSVM (MK-TWSVM):
Use multiple kernels simultaneously to improve
algorithms.

• Cost-Sensitive TWSVM: Modify objective
function, which helps to handle class imbalanced
datasets with significant skew.
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Conclusion
In machine learning out of multiple classification

methods, Twin Support Vector Machine has emerged
as a significant advancement. Its ability to easily han-
dle large-scale and imbalanced datasets makes it more
preferable choice over basic SVM. As research contin-
ues, in corporating new kernel functions, hybrid tech-
niques, and optimization methods will further enhance
its effectiveness in real-world applications.
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Stability Analysis of Rabbit-Fox Model
Radadiya Hardikkumar

Introduction

Let’s consider a population of foxes, denoted as
F , and a population of rabbits, denoted as R. These
variables represent the number of species at any given
time respectively.

Assume that the fox population changes at a rate
proportional to its current population. This assump-
tion is trivial. However, for simplicity, we assume that
they live forever and have no upper population limit.
A basic understanding of calculus gives us insight into
how it leads to exponential growth.

On the other hand, the rabbit population grows
three times its current population, much faster than
the foxes. However, they are also preyed upon. Natu-
rally, their population decreases at a rate proportional
to the number of foxes. This interaction makes the
system more complex, but we aim to understand how
these populations change over time under different ini-
tial conditions.

Visualizing the System

Graphically, we can represent the rabbit popula-
tion on the x-axis and the fox population on the y-axis.
Suppose we start with 10 rabbits and 10 foxes. This
initial state is represented as the point (10, 10). If we
plug these values into the governing differential equa-
tions, we obtain their derivatives, which gives us an
insight into population change at each moment. The
results show that the rabbit population is increasing at
twice the rate of the fox population.

By treating these derivatives as velocity compo-
nents, we can determine the direction of movement in
the phase plane. Since both populations are increasing,
the point moves up to the right. Even though rabbits
are being eaten, their reproduction rate compensates
for it.

Figure 5.1: Graph of Population of Rabbit and Fox

However, if we start with only two rabbits and
ten foxes, the equations indicate that the rabbit pop-
ulation will decline. In this case, there aren’t enough
rabbits to sustain their population, and they eventu-
ally die out. This situation moves the point up and to
the left, ultimately leading to zero rabbits.

Phase Plane and Matrix
Representation

If we repeat this process for various initial condi-
tions, we obtain a phase plane, a field of directional
arrows demonstrating the population evolution over
time. Instead of manually computing each point, we
can express the system in matrix form:

[
R′

F ′

]
=

[
a b
c d

] [
R
F

]
(5.1)

Here, the matrix contains the coefficients that
determine the individual species’ influences compared
with the other’s population dynamics. When we mul-
tiply this matrix by the population vector, we obtain
the rates of change at any given point.
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Figure 5.2: Eigen value and Eigen vector of system of
ODEs

By analyzing this system, we observe that certain
lines (eigenvectors) remain unchanged under transfor-
mation. These eigenvectors represent population ra-
tios that remain constant over time. For example, if
we start with twice as many foxes as rabbits, the pop-
ulations will always maintain that ratio.

Stability Analysis
The Jacobian matrix is given by:

J =
[
α − βy −βx

δy δx − γ

]
(5.2)

At the coexistence equilibrium, the characteristic
equation gives eigenvalues:

λ = ±i
√

αγ (5.3)

Since the eigenvalues are purely imaginary, the system
exhibits periodic oscillations.

Equilibrium Points
Setting dx

dt = 0 and dy
dt = 0, we obtain the equi-

librium points:

• Extinction equilibrium: (0, 0)

• Rabbit-only equilibrium:
(

γ
δ , 0

)
• Coexistence equilibrium:

(
γ
δ , α

β

)

Long-Term Behavior
The eigenvectors divide the phase plane into re-

gions with distinct outcomes.

• Above the top eigenvector: The rabbit pop-
ulation eventually reaches zero as foxes outcom-
pete them. The system evolves toward the y-axis,
meaning the foxes win.

• Below the bottom eigenvector: Rabbits out-
populate foxes over time. Although they are be-
ing hunted, their reproduction rate allows them
to dominate.

• On the eigenvector: The populations maintain
a stable ratio, meaning neither species takes over
completely.

Suppose we adjust the system parameters, such
as increasing the rabbit reproduction rate, which shifts
the eigenvector and expands the region where rabbits
dominate. Similarly, increasing the fox reproduction
rate shifts the eigenvector downward, favoring the fox
population.

Figure 5.3: Eigenvectors Differentiate Phase plane of
survival of Fox and Rabbit

Conclusion
This model provides insight into predator-prey

dynamics and how initial conditions determine long-
term outcomes. We can predict whether a species will
thrive, decline, or coexist in equilibrium by analyzing
eigenvectors and phase planes.
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Mathematical Modeling and Optimal Con-
trol: A Framework for Intelligent Deci-
sion Making
Vishwa Bhatt

An Insight of Mathematical
Model and Optimal Control

In the modern era, Mathematical modeling and
optimal control are essential for analyzing and improv-
ing real and complex systems across different fields. Af-
ter converting real-world problems into mathematical
form, these techniques help optimize decision-making
processes, elevate efficiency, and achieve desired out-
comes.

From public health to robotics, optimal control
strategies are crucial in solving modern problems. This
article explores the introduction of mathematical mod-
eling and optimal control and the various applications
of mathematical modeling and optimal control in sig-
nificant areas.

Mathematical Modeling
Mathematical Modeling uses mathematical

structures and equations to represent real-world sys-
tems. The purpose of using mathematical modeling is
to gain an understanding of the real-world system’s be-
havior and make predictions about its future outcomes.
A model can be as simple as a linear equation or as
complex as a system of partial differential equations.

Steps of Mathematical Modeling

1. Define Problem: We must define a real-world
problem and identify important variables and pa-
rameters.

2. Formulation: We need to develop mathemat-
ical equations describing relationships between
variables.

3. Analysis: Solve the equations using a suitable
method, which can be analytic or numerical.

4. Validation: Compare the model prediction with
real-world data to check accuracy.

Figure 6.1: Mathematical model process [1].

Optimal Control
Optimal control is a mathematical optimization

method for deriving control policies like minimizing
costs, maximizing efficiency, or achieving a desired
state in the shortest possible time. Optimal control
is widely used in engineering, economics, and scientific
fields.

Principles of Optimal Control

1. Control Variables: The parameters that can
be adjusted to influence the system’s behavior
(e.g., dosage, temperature).

2. Objective Function: Criteria of optimization
(e.g., minimize cost, maximize production).

3. Constraints: The limitation or requirements
that should be satisfied (e.g., safety limits).

4. Optimization Methods: Techniques can be
used to find the optimal control policy (e.g., Pon-
tryagin’s maximum principle, dynamic program-
ming).
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Real world Implementation
of Mathematical Model and
Optimal control
Application in Healthcare
Epidemiology: controlling Disease Spread

In epidemiology, mathematical models such
as the SIR (Susceptible-Infected-Recovered), SEIR
(Susceptible- Exposed-Infected-Recovered), and SIRS
(Susceptible-Infected-Recovered- Susceptible) models
help in predicting disease spread. Optimal control
strategies like vaccination, quarantine, social distanc-
ing, and treatment policies are designed to minimize
outbreaks while balancing economic and social factors.
The control function applied to these models helps to
find the best strategies at different stages of an epi-
demic like COVID-19.

Medical Treatment: Optimal Drug Administra-
tion

In optimizing drug dosage, optimal control plays
a crucial role. Mathematical models help design per-
sonalized drug regimens for chronic diseases such as di-
abetes and cancer that minimize side effects and pro-
vide effective therapy. Additionally, models assist in
planning for the treatment of infectious diseases such
as HIV and COVID-19 by minimizing viral load while
reducing side effects.

Biological Systems and Homeostasis

Mathematical modeling is used in biological sys-
tems to study homeostasis. Optimal control methods
help to understand regulatory mechanisms in processes
such as insulin regulation in diabetes treatment and
maintaining a constant body temperature without the
effect of external temperature and blood pressure reg-
ulation.

Environmental and Ecological Applica-
tion
Mitigation of Pollution and Climate change

Optimal control helps in climate change mitiga-
tion strategies, managing resources, and reducing car-
bon releases. Models used in designing policies for
energy use, deforestation control, and carbon trading
mechanisms. These policies are essential in achieving
global climate goals and long-term environmental sus-
tainability.

Ecosystem stability and Wildlife Maintenance

Predator-prey dynamics and species population
growth’s mathematical model are very important to
maintain stability in the ecosystem. Optimal control

is used for eco-friendly hunting or harvesting policies,
which balance economic gains with stability.

Applications in Engineering and Finance

Financial Markets: Portfolio Control and Fi-
nancial Management

Mathematical models with stochastic control
techniques are used in finance to optimize portfolio al-
location, manage risk, and optimize investment strate-
gies with maximum returns and minimum risk. Gov-
ernments also use models to design policies that max-
imize economic growth by reducing inflation and un-
employment risk.

Robotics and Autonomous System

Robotics depends on control theory for mo-
tion planning, navigation, trajectory optimization, and
feedback control of autonomous systems. Like auto-
piloted cars, control strategies guarantee smooth navi-
gation by minimizing energy intake and avoiding obsta-
cles. Artificial intelligence and optimal control elevate
automation, consistency, and adaptability in robotics.

Conclusion
Mathematical modeling and Optimal control

give a priceless insight into complex systems of vari-
ous disciplines. These mathematical tools are helpful
in all fields, from healthcare to finance and from ecol-
ogy to robotics, to create strategies that optimize de-
sired outcomes while minimizing costs or risks. The
applications of optimal control will continually grow as
technology advances, which will benefit the future of
science and engineering.
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Frames and Their Use in Signal Process-
ing
Sanjul Mishra

Introduction
We face poor internet connectivity on various oc-

casions, leading to data and information loss. To over-
come this issue, mathematicians and computer scien-
tists have devised an idea of frames. A frame is an
organized way to handle data with a possibility of re-
covery even when data is lost during communication.
Bodmann and Paulsen introduced the mathematical
description of frames [1].

We would like to show the idea through a small
example. Let’s take an image, divide it into tiny pieces,
and lose a few pieces. We can still reconstruct the origi-
nal image, which contains fewer pixels than the original
picture. The hidden information behind the lost data
transmission motivates us to use frames. A frame is a
unique set of data points that assist us in retrieving lost
information while reconstructing the original picture.
One such classification is a “Two-uniform frame.” This
frame tries to keep the error, i.e., information between
the reconstructed and original messages, as small as
possible.

Frames aren’t just random collections of data;
they follow structured patterns, and these patterns can
be represented using graphs, which are mathematical
structures of a collection of points connected by lines.
These graphs help us determine the frame’s practical-
ity in recovering lost information. Some unique graphs,
like Hadamard and Conference Matrices, can be used
to create optimal frames. When such matrices are
used, they ensure that the reconstructed message con-
tains minimal error even though the original message

was significantly lost.
Another class of frames is known as “Equal-norm

frame.” These ensure that even if there is a considerable
loss in the data, the data can still be reconstructed with
the minimum possible error. These frames are widely
used in communication networks to improve reliability.

In our present digital era, we expect buffer-
less online streaming and sharing of secure informa-
tion among space missions, which boils down to error-
less data transmission. Scientists are discovering new
ways to protect lossless data transmission by study-
ing frames and graphs. As technology advances, new
types of frames are being developed to handle even
more erasures. Further, scientists are exploring novel
approaches to utilize frames in emerging quantum com-
puting and artificial intelligence fields. The future of
secure and reliable data transmission depends on these
exciting mathematical discoveries.
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Fractional Differential Equations: A Jour-
ney from Historical Insights to Modern
Day Applications
Vinchhi Foram Dhanji

Initial Developments

As the apple fell on Isaac Newton was the begin-
ning of gravity. A similar thought about the order of
derivatives sparked in L’hopital’s mind: “What if the
order will be 1

2 ?”
In the 16th century, L’hopital wrote a letter to

Leibniz about fractional order differentiation. The idea
of fractional derivatives has been in the spotlight since
the 18th century, as shown by the works of Leonhard
Euler and Joseph Fourier. Euler analyzed the concept
of fractional calculus as it applies to series expansion
and special functions. His work made further progress
in developing the theory of fractional differentiation.

In 1819, S. F. Lacroix first mentioned the arbi-
trary order derivative in his book. In 1823, Niels Hen-
rik Abel and Carl Gustav Jacob Jacobi gave the con-
cept of generalizing the derivative to non-integer order,
but it was not fully defined at this stage. In 1830, the
Riemann-Liouville fractional integral and the Liouville
fractional derivative offered a more structured math-
ematical approach to fractional calculus. Still, it was
only in theory, and it lacked applications. During the
19th century, mathematical interest in fractional calcu-
lus grew on and off, but it was still somewhat explored
in Mechanics and Physics. In the early 20th century,
many researchers pushed the development of more sys-
tematic theories for fractional derivatives.

Paul Lévy, in his 1925 work “Calcul des Proba-
bilités,” applied fractional calculus to probability the-
ory. The 1920s is often regarded as the best time
for implementing fractional derivatives in Engineering,
Control theory, and Physics driven by work in thermo-
dynamics, viscoelasticity, and diffusion processes. It
expanded to fields of signal processing and dynamical
systems. It is widely used in physics, finance, and even
biological systems. It is used for model systems by
numerical methods that exhibit memory and heredi-
tary properties such as viscoelastic materials, anoma-
lous diffusion, and fractal geometry. Now, it has be-
come a cutting-edge research area.

Few Important Fractional
Derivatives

• Liouville derivative [2]:

Dγ [f(x)] = 1
Γ(1 − γ)

d

dx

∫ x

−∞
(x − ξ)−γf(ξ) dx,

−∞ < x < +∞

• Riemann-Liouville fractional integral of f of or-
der α [2]:

Dγf(x) = 1
Γ(n − γ)

dn

dxn

∫ x

a

f(t)
(x − t)γ−n+1 dt,

n − 1 < γ < n

• Cuputo derivative [2]:

CDγf(x) = 1
Γ(n − γ)

∫ x

0

f (n)(t)
(x − t)γ−n+1 dt,

n − 1 < γ < n

• Wely fractional integral:

(W −γf)(x) = 1
Γ(γ)

∫ ∞

x

(t − x)γ−1f(t) dt,

Re(γ) > 0

• Grünwald-Letnikov fractional derivative [2]:

Dαf(x) = lim
h→0

1
hα

∞∑
k=0

(−1)k Γ(α + 1)f(x − kh)
Γ(k + 1)Γ(α − k + 1)

where Γ(·) is the Gamma function

Significance in Present
World

It has become a vibrant topic due to its excellent
applications and amazing real-life results.
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Image processing
Sobel and Canny proposed edge-detecting meth-

ods in 2018 [1]. These methods effectively detect sharp
edges, but they may struggle with images containing
complex textures. Fractional equations help in tex-
tured or fractal-structured photos. It also performs
very well in blurry and low-quality images.

Behavior of viscoelastic material
Maxwell and Kelvin-Voigit’s models for vis-

coelastic material behavior were based on integer order
derivatives. Fractional calculus gives more accuracy to
the effects of its behavior, as it has a memory effect.
When we use fractional derivatives in stress-strain re-
lation, it shows that viscoelastic material responses de-
pend not only on current strain but also on past strain.

Control theory
Fractional controllers, such as fractional PID

controllers modified controllers since their inception.
Using fractional derivatives improves the performance
of drones, robots, and all dynamic systems dependent
on the. Moreover, fractional derivatives enhance the
performance of drones, robots, and other dynamic sys-
tems that depend on the fractional memory effect.

Electrical engineering
Fractional differential equation is widely used in

the modeling of circuits. It helps in the study of capac-
itors, inductors, etc. Fractional calculus can describe
the system’s behavior more effectively than standard
methods.

Biology
Fractional models are gradually used in biologi-

cal systems, like anomalous diffusion [3], neutral net-
work, pharmacokinetics, drug release models [4], etc.

Finance
Economics models are based on long memory

processes. The price of stocks in real life depends on
historical data. Fractional models can capture the pro-
longed effects of shocks or fluctuations in the market.

Quantum systems
The fractional Schrödinger equation is widely

used in quantum dynamics systems. Fractional cal-
culus can model the evolution of quantum particles
in complex, disordered environments where traditional
models fall short. It also provides deeper insights into
quantum tunneling.

Conclusion
Fractional differential equations offer a powerful

tool for all systems with memory effects. The fractional
differential equation became an extraordinary differen-
tial equation. It continuously influences human knowl-
edge and progress across a wide range of advancing
research, technology, and daily living.
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Multi-Objective Optimization: Nature,
Applications, and Solution Techniques
Ekata Jain

Multi-objective optimization, or MOO, is a
branch of mathematics that handles problems char-
acterized by two or more opposing goals. MOO, as
opposed to single-objective optimization, which always
aims to find one optimal solution to a problem, tries its
best to accomplish two or more goals simultaneously.
This conflict among objectives makes MOO complex
but necessary for scenarios where a decision must be
made with multiple criteria. For example, designing
a vehicle involves maximizing safety, minimizing cost,
and maximizing fuel efficiency. These goals are usu-
ally conflicting; adding safety features drives up costs
and cuts fuel economy. So, an equilibrium between
them has to be met. The essence of MOO is making
compromises on the targets to achieve the final set of
optimal solutions for decision-makers to choose from,
depending on the adopted preference.

Multi-objective optimization has numerous real-
world applications that require trade-offs between com-
peting objectives. In engineering design, for example,
it is used to improve a product’s performance, cost,
and safety features. Engineers in the automotive and
aerospace industries strive to achieve maximum perfor-
mance while controlling costs and maintaining safety
standards. In supply chain management, companies
seek to optimize costs, delivery time, and environmen-
tal impact to enhance operational effectiveness and sus-
tainability. In finance, MOO aids in the optimization
of portfolios through diversification as it helps balance
risk and return on investment. In medicine, it is helpful
in treatment planning to achieve maximum effective-
ness with minimal side effects while controlling costs
for the healthcare provider and the patient. Likewise,
in energy systems, MOO is used to balance the level of
power generated with the operating cost and the neg-
ative effect on the environment to promote sustainable
energy practices. All these examples relate to each
other as they demonstrate MOO as one of the most
critical aspects of solving numerous interrelated prob-
lems concerning diverse fields of knowledge.

MOO problems are defined by having coexisting
conflicting objectives and, therefore, a trade-off of op-
timal set solutions instead of an optimal solution. This
brings us to the notion of Pareto Optimality, where a
solution is said to be Pareto optimal if no other solu-
tion can be offered that improves one objective with-
out worsening at least one other objective. The com-
plete collection of Pareto optimal solutions establishes

the so-called Pareto front, illustrating the trade-off be-
tween the conflicting objectives. Within the identi-
fication of the Pareto set, there still lie possibilities
to choose from, and the decision maker must choose
from the Pareto front, representing the solutions with
the utmost importance to them. This gives rise to
the concept of multi-criteria decision-making (MCDM)
that helps rank or choose from Pareto optimal so-
lutions by introducing the decision maker’s choice.
Thus, MOO problems not only require mathematical
optimization but also empower represented decision-
making to select the most appropriate compromise so-
lution. A few classical methods have been developed
for MOO problems. One of the classical methods is
the Weighted Sum Method, which is the simplest to
implement, where all objectives are weighted to form
a single objective. This approach could prove inef-
fective for finding Pareto optimal solutions when the
Pareto front is non-convex. The ϵ-Constraint Method
narrows the search space by optimizing one objective
while transforming others into constraints with prede-
termined limitations. Goal programming is appropri-
ate for issues where particular targets are desired be-
cause it establishes ambition levels for each aim and
reduces departures. A utility function that reflects the
decision-maker’s preferences aggregates various objec-
tives in a different method known as a utility function.
Although these traditional approaches work well, they
frequently have drawbacks when handling complicated,
non-linear, and multi-modal problems.

Limitations of classical techniques have
prompted the development of new techniques and ap-
proaches. The newer population-based methods, for
example, Non-dominated Sorting Genetic Algorithm
(NSGA) II & III and Strength Pareto Evolutionary
Algorithm (SPEA) 2), have been very successful in
solving most MOO problems since they can effec-
tively search the problem space by simultaneously
considering different Pareto optimal solutions. These
methods mimic the natural selection procedure and
apply operators like selection, crossover, and muta-
tion to develop solutions over generations. Another
modern approach is Multi-Objective Particle Swarm
Optimization (MOPSO), which considers social be-
havior in flocks of birds for exploring the search space
efficiently by Updating the positions of particles (so-
lutions) in terms of their own experiences and those
in the neighborhood of other particles. Hybrid al-
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gorithms take advantage of evolutionary techniques
and local searches to achieve better accuracy in con-
vergence. With the rise of machine learning, interest
in integrating Machine Learning Models as surrogate
models to estimate complex objective functions and
reduce computational expenditure is gaining momen-
tum.

Though much advancement has been made in
MOO, scalability and computational complexity re-
main significant challenges. A larger number of objec-
tives and constraints exponentially increase the search
space, requiring even more computational resources
and efficient algorithms. Adding a decision-maker’s
preferences effectively constitutes another challenge
because preferences can change dynamically during
decision-making. Adaptive algorithms may be neces-
sary to address changing objectives and constraints
in dynamic, uncertain environments. In conclusion,
multi-objective optimization continues to be a crucial

technique for resolving conflicting objectives in intri-
cate situations as the need for sophisticated decision-
making grows. Its adaptability and efficiency have
proven helpful in various domains, from engineering
and banking to healthcare and energy systems. By ex-
amining trade-offs and providing various ideal options,
MOO enables decision-makers to make well-informed
and well-rounded decisions. Without a doubt, its on-
going advancement and use will lead to more practical
and efficient answers to a range of real-world problems.
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Importance of Operations Research
Gannamaneni Sai Charan

Operations Research (OR) has become essential
for efficiently managing day-to-day activities in the
modern world. It has attracted many researchers to
work in various fields, from optimization to queueing
theory and stochastic modeling. It is adopted to make
better decisions that provide the best outcome effi-
ciently. Over the years, researchers have focused on
developing efficient models for a better understanding
of systems of interest that offer better insights leading
to strategic decision-making, which is a key concept in
the studies of OR. Many theories have been developed
focusing on the progress of OR, and it has wide-ranging
applications in healthcare, telecommunication, trans-
portation, resource management, military operations,
logistics, etc.

While studying OR, the first step is the chal-
lenge of identifying and mathematically constructing
the problem. The mathematical construction may be
linear or non-linear, depicting the real-life system in a
well-constructed manner. The next question is “. How
do we solve the mathematical construction?” Numer-
ous analytical methods have been devised to solve var-
ious systems, yielding the desired results. The findings
are applied to offer guidance for improved decision-
making. Finally, the optimal option found during
decision-making is implemented to achieve more effec-
tive outcomes.

Numerous important topics are studied in OR,
such as queueing theory, stochastic modeling, opti-
mization, supply chain management, game theory, sim-
ulation modeling, etc. These theories offer the best
solutions and aid in the comprehensive understand-
ing of complex situations. Every OR topic has sig-
nificance and applicability across a wide range of in-
dustries. The queueing theory originated in develop-
ing efficient telecommunication management systems

by reducing a customer’s wait time while all the lines
are busy. This has led to the development of intrigu-
ing queueing models that find use in various domains,
including computer systems, manufacturing systems,
network management, healthcare management, etc.
Lately, advancements in healthcare queueing manage-
ment have assisted in allocating the available resources
optimally while meeting healthcare demands. Further-
more, studies on optimally distributing resources have
great importance, especially with fast-paced work in
inventory management. Another important concept of
OR is optimization, which has vast applications. Op-
timization tools are adopted to optimize the effective
usage of resources while satisfying the imposed restric-
tions. The main objectives considered by organizations
adopting optimization techniques are to reduce cost,
increase profit, and minimize environmental damage
and risk. Using the abovementioned studies, many
OR tools have been developed that are very advan-
tageous and adopted by many industrial, healthcare,
and telecommunication organizations.

In conclusion, OR is a fascinating area of study,
and the advancement of effective systems heavily de-
pends on its development. Given the broad spectrum
of OR difficulties, OR tools can play a crucial role in
expanding businesses, sectors, and the healthcare in-
dustry, all of which contribute to the development of
governments and nations.
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The Ethics of Mathematical Machines
Rajarapu Mahesh

The Machines Are Com-
ing...With Calculators!

Think about this? You are sitting at the desk
working hard on an important math-problem-maybe
something involving prime numbers, which are odd
creatures, as they cannot be divided by other num-
bers except one and themselves.You are focused, writ-
ing carefully, when suddenly a neural network, a special
computer program, arrives and it calmly says, “I have
already solved it for you. Here is your answer!.”

What happens if machines solve math problems
before we do? This is not just an idea from stories, it is
a serious question about math, thought, and our role as
humans. Neural networks are advanced programs that
use a helpful math method called gradient descent to
find answers quickly, much faster than a person might.
But if they begin to solve our cherished math prob-
lems, the ones we love to explore what does this mean
for us? Let us look into this together, with respect and
a deep appreciation for the journey ahead.

The Math That Makes It
Work: Understanding Gra-
dient Descent

To initiate, let’s introduce a new term, the gra-
dient descent. This elegant trick from the field of
mathematics is generally used for optimizing neural
network parameters. Let us assume you have some-
thing like a ball, and you want to drop it down the
hill to reach ground level. Neural networks also func-
tion in the same way, incrementally adjusting some pa-
rameters called weights to rectify and minimize errors.
Thus, mathematically, we get

wnew = wold − η · ∂E

∂w
(11.1)

We’d like to interpret it informally.

• w: weight, like a number the network uses to de-
cide.

• Before performing any actions: wold is the
weight.

• Once it is updated, the weight becomes wnew.

• Learning rate, which is also called eta, tells how
big and small every step is. This means how
much the ball will be pushed to roll with each
step: η.

• The gradient or slope of the hill shows − ∂E
∂w the

steepness at which the ball will roll to the bot-
tom.

• The error E: how wrong the network’s guess was.
Therefore, thatś the number we want to mini-
mize.
In other words, the network starts by taking a

weight, inspects the slope of the error, steps down the
error, and repeats until it finds the lowest point of er-
ror. This is the ball rolling until it settles at the bottom
and holds its position.

This showed the working method of proof in
Mathematics. Say you want to prove something: that
the sum of the first n odd numbers equals n2 (n
squared). For example:

• For 1 odd number: 1 = 12 = 1.

• For 2 odd numbers: 1 + 3 = 4 = 22.

• For 3 odd numbers: 1 + 3 + 5 = 9 = 32.
Essentially, someone would prove this using in-

duction. Could you start with a small number like one
and see if the assertion is valid? The next step would
be to assume induction to hold for some number k (i.e.,
the sum is k2) and then proceed to check for the fol-
lowing number k + 1 by augmenting the following odd
number, which happens to be 2k + 1. The math here
would look like this:

Sk + (2k + 1) = k2 + 2k + 1 = (k + 1)2 (11.2)

Here, Sk: up to k, is assumed to be k2. Adding
2k + 1 gives k2 + 2k + 1 = (k + 1)2. This shows that
this declaration has to be true for every number, stage
by stage.

But a neural network does it differently. Instead
of using steps like induction, it looks at many exam-
ples and data and figures out the pattern. After see-
ing many sums, it might just say, “. The answer is
n2.” Machine Method: A machine does it differently.
It looks at many examples, like billions of sums, and
learns the pattern from them. After studying the data,
it says the answer is n2. It also says its guess is almost
perfect, with only a tiny error, like 0.0001%. The ma-
chine doesn’t explain the steps; it just answers quickly
based on what it has learned.
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Humans take time to prove things carefully and
show every part. Machines use lots of data to find the
answer fast, but they don’t show how they got it. Both
find the correct answer, but they work very differently.
So, gradient descent helps neural networks find answers
by making small changes until they’re right. They can
even tackle proofs, but they do it in their way fast and
direct, not slow and careful like humans. Both ways
work, but they show how machines and people think
differently about math.

The Big Question: Ma-
chines and Mathematicians

So, what happens if machines solve math
proofs before we do? Let’s look at this critical ques-
tion carefully and step by step.

Part 1: Machines Are Very Fast

Machines are rapid in operation. They are solv-
ing problems at a speed much faster than humans. In
2019, some smart people were using a computer pro-
gram to shorten and improve mathematics proofs, very
much in the way of offering graph theory.[4] Noreena
Hertz wrote about this in Nature in 2021 in an article
titled “AI tackles tough math problems.”[2, 4] They did
not finish any big problems like Fermat’s Last Theorem
but eased the load of human labor. Would we cheer for
machines if they solved a major mathematical problem
such as the Riemann Hypothesis before us and we felt
pity for ourselves? Worth pondering.

Part 2: Proofs Are Special to Humans

Mathematical proofs aren’t just solutions. They
are beautiful ideas we embed into our creations. Long
ago, a mathematician by the name of Euclid proved
that there are always more prime numbers no matter
how many you find[3]. He would say, “Assume that
there is a greatest prime number, call it p. Multiply all
the primes up to p and add 1.”

Examples have gone thus:

N = 2 · 3 · 5 · . . . · p + 1 (11.3)

This new number, N , is either a prime itself or
can be divided by a prime bigger than p. This means
there’s always a bigger prime, so there are infinite
primes. It’s a clear and lovely way to show the idea.

But a machine might just look at numbers and
say, “Yes, there are infinite primes,” without showing
the steps. It doesn’t care about making it beautiful.
If machines start doing all our proofs, will we lose this
special human touch? Or will they help us think of
even bigger ideas? We need to consider both sides.

Part 3: What Happens If Machines Do
Everything?

Imagine asking a machine, “Can you prove Gold-
bach’s Conjecture?” This conjecture says every even
number bigger than 2 can be made by adding two prime
numbers. A machine might answer, “Yes, it’s true,”
and stop there.

If machines solve all our math problems, what
will we do? Will we have no work left, just watching
machines get all the praise? Or they could help us
by giving us answers so we can try more challenging
problems ourselves. For example, if a machine solves
something big, we might say, “That’s amazing! Now,
let’s find something even more exciting to work on.” It
could push us to do better.

The Upside: Machines as
Helpers

Here’s a positive idea. Neural networks can be
our helpers, not our bosses. In 2022, AlphaCode from
DeepMind’s program worked on coding problems with
some math ideas in them[5]. This was written about
in a magazine called Science, in an article named “AI
steps into pure math,” The machine didn’t take over
people; it helped them by making things faster and eas-
ier. For example, imagine a machine noticing a pattern
in the gaps between prime numbers. Then, humans use
that pattern to make clear and excellent proof. When
we work together, we can do great things.

So, machines don’t have to be our competitors.
They can be like guides. They might say, “Here’s the
answer,” and then we take it and make it better or
more beautiful. Here’s why humans are special and
what we can do:

• Humans are unique because we think deeply, cre-
ate new ideas, and explain things in easy-to-
understand and enjoyable ways.

• Machines can find answers quickly using lots of
data, but they don’t tell us the story behind the
answer. Humans add that story.

• If machines do all the hard work, like finding
patterns or solving big problems—we can focus
on making new questions, finding meaning, and
sharing the beauty of math with others.

In this way, machines do challenging tasks, and
we keep up the critical task of thinking and creating.
Both sides win machines help us, and we use our unique
skills to make math even better.
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Conclusion: A Bright Fu-
ture with Machines

What does it mean for us mathematicians if neu-
ral networks solve math theorems? It’s an exciting
thought. Sometimes, we might worry because ma-
chines are so good and fast, using tools like gradient
descent to find answers quickly. But there’s also won-
der they can do amazing things! And best of all, I hope
they can help us with our work.

Humans have something special: we think cre-
atively that machines can’t copy yet. When you work
on a math problem next time, you might wonder, “Can
a machine do this faster?” That’s okay; keep working
on it yourself. Even if machines get good at proofs, we
will always have our unique way of understanding and
exploring math. With machines as our helpers, we can
make math even more remarkable for everyone.
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The Legacy of Emmy Noether in Ring
Theory
Theophilus Gera

The title “Mother of Abstract Algebra,” given
by Irving Kaplansky (1917-2006), correctly stands for
Emmy Noether (1882-1935). Her pioneering work
stood the test of time and continues to inspire alge-
braists. Her work [6] (a translation is available at [1])
seems understandable and quite often negligible to us
as compared to recent advances in mathematical stud-
ies. Still, it was a turning point of restructuring per-
spectives introduced and studied by J. E. M. Wedder-
burn (1882-1948) and their descendants. It is right to
say that she was the reason for the “advent” of modern
algebra.

In her paper ([6]), R. Dedekind’s1 theorem of the
finite chain was put forward in an ideal theoretic ap-
proach, which ruled out the “axiom of choice.” In fact,
Lasker’s2 theory on the decomposition of primary ide-
als led Noether to prove it in a general context. In the
same paper, she gave a counter-example stating that a
commutative case is not superfluous (a detailed study
is found in [7]).

In ring theory, Noether’s work influenced two
central theorems, i.e., Cohen’s3 Theorem [2] and Ka-
plansky’s Theorem [3]. The lack of a unified approach
pushed for a more significant unifying theory. Lam and
Reyes [4] [5] [8] [10] published a series of papers in this
direction by conceptualizing Oka and Ako ideal fam-
ilies and studying the “prime ideal principal” (which
is noncommutative analog of “maximal ideal implies
prime” concepts). Reyes further extended the theo-
rems in noncommutative settings in [9].

As observed earlier, a small part of Noether’s
work developed literature, which is hard to track. It
is even hard to describe the impact Noether created
within a century of her pioneering work, and it be-
comes even more complex and challenging to record
the entire literature in the near future. The flavor of
ideal theory and the legacy of Emmy Noether is hard
to explain as her theory has been inherited in almost
every part of Algebras and beyond. The Conference
on 100 Years of Noetherian Rings, organized by IAS,
Princeton, in 2023, is a testimony and witness to her
work. The future of algebra is Noetherianism to its
core.

References
[1] D. Berlyne. Ideal theory in rings (translation of

”idealtheorie in ringbereichen” by emmy noether),
2014.

[2] I. S. Cohen. Commutative rings with restricted
minimum condition. Duke Math. J., 17:27–42,
1950.

[3] I. Kaplansky. Elementary divisors and modules.
Trans. Amer. Math. Soc., 66:464–491, 1949.

[4] T. Y. Lam and M. L. Reyes. A prime ideal
principle in commutative algebra. J. Algebra,
319(7):3006–3027, 2008.

[5] T. Y. Lam and M. L. Reyes. Oka and Ako ideal
families in commutative rings. In Rings, mod-
ules and representations, volume 480 of Contemp.
Math., pages 263–288. Amer. Math. Soc., Provi-
dence, RI, 2009.

[6] E. Noether. Idealtheorie in Ringbereichen. Math.
Ann., 83(1-2):24–66, 1921.

[7] B. L. Osofsky. Noether Lasker primary decomposi-
tion revisited. Amer. Math. Monthly, 101(8):759–
768, 1994.

[8] M. L. Reyes. A one-sided prime ideal principle for
noncommutative rings. J. Algebra Appl., 9(6):877–
919, 2010.

[9] M. L. Reyes. Noncommutative generalizations of
theorems of Cohen and Kaplansky. Algebr. Rep-
resent. Theory, 15(5):933–975, 2012.

[10] M. L. Reyes. A prime ideal principle for two-sided
ideals. Comm. Algebra, 44(11):4585–4608, 2016.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theophilus Gera
Department of Mathematics, Sardar Val-
labhbhai National Institute of Technology,
Surat, Gujarat, India-395007
E-Mail Id: geratheophilus@gmail.com

1(1831-1916)
2(1868-1941)
3(1917-1955)

AMaThing 6.0 23

https://www.ias.edu/math/events/conference-100-years-noetherian-rings
https://www.ias.edu/math/events/conference-100-years-noetherian-rings
mailto:geratheophilus@gmail.com


The Importance of Mathematics and Its
Applications in Performance Analysis of
a Device Using SCAPS-1D
Sodari Saiminnu

In order to comprehend and optimize semicon-
ductor devices, mathematics is essential. It offers cru-
cial tools for simulating recombination processes, elec-
tric fields, and charge carrier dynamics—all of which
have an impact on device performance. Numerical sim-
ulations are frequently used in semiconductor physics
to assess and improve device efficiency. SCAPS-1D
(Solar Cell Capacitance Simulator – 1D) is one such
potent simulation tool.

In semiconductor research, SCAPS-1D is com-
monly used to model and analyze electrical properties,
especially in the study of solar cells. It uses mathemat-
ical formulas to resolve intricate issues pertaining to
efficiency, recombination, and charge transfer. The sig-
nificance of mathematics in performance analysis with
SCAPS-1D and its role in semiconductor device opti-
mization are examined in this paper.

Mathematical Foundations
of SCAPS-1D

Basic mathematical formulas that explain charge
carrier behavior, electric fields, and recombination
processes control how semiconductor devices operate.
Among the fundamental mathematical ideas used in
SCAPS-1D simulations are:

Poisson’s Equation

Poisson’s equation describes the relationship be-
tween the electrostatic potential and charge density in
a semiconductor:

∇.(ϵ∇V ) = −ρ

Continuity Equations

Charge carrier transport is modeled using conti-
nuity equations, which account for generation, recom-
bination, and movement of electrons and holes.

Numerical Methods in
SCAPS-1D

SCAPS-1D employs mathematical techniques to
solve semiconductor equations:

1. Finite Difference Method (FDM): Dis-
cretizes equations for numerical approximation.

2. Newton-Raphson Method: Solves nonlinear
equations efficiently.

3. Matrix Algebra: Used to solve large systems
of equations related to device behavior.

Performance Analysis of
Devices Using SCAPS-1D

Mathematics helps extract key performance pa-
rameters from SCAPS-1D simulations:

Current-Voltage (J-V) Characteristics
The J-V curve provides:

• Short-circuit current – Carrier generation ef-
ficiency.

• Open-circuit voltage – Determines recombina-
tion effects.

• Fill Factor (FF) – A measure of efficiency.

Capacitance-Voltage (C-V) Analysis

Capacitance is calculated using: C = dQ
dV

Bandgap Engineering and Energy Levels
Energy band diagrams are modeled mathemat-

ically to examine the effects of bandgap changes on
charge transport and recombination. High-efficiency
device design is aided by the optimization of band
alignment using mathematical models.
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Thickness Optimization for Improved
Efficiency

SCAPS-1D uses optimization and numerical dif-
ferentiation techniques to identify the optimal thick-
ness of each layer in a semiconductor device to attain
maximum efficiency.

Temperature Dependence and Thermal
Effects

The performance of devices under various envi-
ronmental circumstances can be predicted with the use
of mathematical models of temperature-dependent car-
rier mobility and recombination rates.

Interface and Defect Modeling
The effects of bulk and interface flaws on carrier

transport can be simulated with the aid of mathemat-
ical models.

Optical Properties and Light Absorption
Analysis

SCAPS-1D also simulates light absorption and
its impact on device efficiency.

1. Absorption Coefficient and Optical Gen-
eration: The optical absorption spectrum is an-
alyzed to study how different wavelengths con-
tribute to charge generation. The impact of layer
thickness and bandgap tuning on light absorption
is evaluated.

2. Quantum Efficiency (QE) Analysis: The
External Quantum Efficiency (EQE) and Inter-
nal Quantum Efficiency (IQE) curves provide in-
sights into photon absorption and carrier extrac-
tion.

3. Impact of Anti Reflection Coatings (ARC):
SCAPS-1D can model ARC layers to reduce re-
flection losses and enhance light absorption in so-
lar cells.

Conclusion
In semiconductor research, mathematics is an es-

sential instrument that sheds light on charge transport,
recombination, and device performance. Using numer-
ical simulations and mathematical modeling, SCAPS-
1D analyzes and optimizes semiconductor devices, es-
pecially solar cells. Researchers can improve efficiency
and create next-generation semiconductor devices by
resolving complicated differential equations and de-
riving performance metrics. Anyone in semiconduc-
tor physics must understand these mathematical con-
cepts since they improve device design and optimiza-
tion. The simulation tool SCAPS-1D is essential for
conducting thorough performance analysis and opti-
mizing semiconductor devices, especially thin-film and
multilayer solar cells. Its numerical method provides
a comprehensive grasp of charge carrier dynamics, re-
combination mechanisms, energy band topologies, and
the impact of material parameters on device perfor-
mance.

The ability of SCAPS-1D to simulate various de-
vice architectures and material compositions is one of
its most significant benefits since it enables researchers
to investigate novel technologies without immediately
investing in costly fabrication and testing. SCAPS-
1D helps alter factors, including doping concentration,
layer thickness, defect densities, and interface condi-
tions, to find the best configurations that optimize ef-
ficiency and stability.
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